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Introduction

Initiated in Oxford in 1968, Study Groups with Industry provide a forum for
industrial scientists to work alongside academic mathematicians on problems
of direct industrial relevance. They are an internationally recognized method
of technology and knowledge transfer between academic mathematicians and
industry, usually lasting one week.

The success of the ESGI lies in its unique format which has been copied
around the world, and which allows mathematicians to work on reduced groups
to study problems presented by industry. These problems arise from any
industrial and economic sector thanks to the versatility of Mathematics.

The objective is to present the capabilities of Mathematics and its applicabi-
lity in a large part of the challenges and needs that industry presents. It
aims to bring small, medium and large companies a technology with great
potential, used by highly quali�ed researchers and which does not require large
investments to use.

Therefore, collaboration between industry experts and researchers is a key
point to address technological innovation issues by using successful mathemati-
cal techniques. ESGI contributes to the promotion of Mathematics and helps
companies to use Mathematics to improve their processes.

The goals which want to be reached at the ESGI are:

� �nd solutions and bring new insights to existing industrial problems;

� establish lasting and productive working relations between industry and
mathematicians;

� propose new lines of research based on business challenges;

� reinforce the importance of Mathematics in industry and mathematical
pro�les companies; and

� stimulate greater awareness of the power of Mathematics to provide
solutions to solve real-world problems.

Finally, it should be pointed out that 70 researchers, students, professors
and company technicians contributed to a successful 163 ESGI.

Santiago de Compostela on 20th January, 2022
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- Blanquero Bravo, Rafael. Associate Professor in the Department of
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Basque Center for Applied Mathematics. math-in member.
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Nucleation, growth and detachment of
bubbles formed by reaction over

surfaces

A. Bermúdez, P. Fontán, M. Fontelos. F. Higuera, A. Rivero

Abstract

This article concerns a problem presented at the 163 European Study
Group with Industry by Repsol company. After a description of the
problem, a mathematical model is introduced which is formulated and
solved, for a simple case, by using phase-�eld methods implemented in
FEniCs software

Figure 1: Example of electrochemical systems
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1. Introduction

Repsol has been actively working in recent years on electrochemical systems.
Batteries and electrolytic cells are two examples ... but also corrosion (which
produce millionaire losses along the many kilometers of pipelines) or heteroge-
neous catalysts are closely related problems.

In electrolytic cells (i.e. to produce hydrogen at low pressure), either
reduction or oxidation reaction at one electrode, requires that the ionic species
travel towards the wall from the water. On the walls of the electrodes, small
growing bubbles with gas, a product from the electrochemical reaction occurring
in the interface electrode-electrolyte, are forming. Rapidly the surface of the
electrodes are almost completely covered by the bubbles but only at those
regions of the wall free of bubbles (insulate) are able to complete the reaction.
Thus, only a small fraction of the wall is e�ective and the e�ciency of the
process is limited by the behavior of the attached bubbles.

When the bubbles become large they begin to feel the outer �ow and the
buoyancy. Detachment of the bubble occurs when �nally those forces overcome
the capillary force

If the bubbles are large we also may have troubles in the case of porous
electrodes. It is very important to understand the process and mechanism
by which a bubble born, grows and detaches and to determine the relevant
parameters and their relation.

The outline of this article is as follows: �rst, a mathematical model using
conservation laws is derived. Second, we do a �translation� of these sharp
interface equations to a di�use interface model using a phase �eld method.
Third, we simulate a simpli�ed scenario but at the same time, that includes
all the important e�ects.

The main goals of the company are

� to understand the process and mechanisms by which a bubble (of H2,
for sake of concreteness) is born, grows and detach as product of an
electrochemical reaction at the interface between an electrode and an
electrolyte,

� to build a model that describes the process and allows us to simulate it.

From the company point of view, to get a phase �eld model would be desirable

2. Water electrolysis

Water electrolysis is the decomposition of water into hydrogen and oxygen
using electric energy in an electrolytic cell. The electrochemical reactions
involved are a reduction reaction at one of the electrodes (the cathode), where
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Nucleation, growth and detachment of bubbles formed by reaction over surfaces

hydrogen is produced, and an oxidation reaction at the other electrode (the
anode), where oxygen is produced.

The rates of these reactions depend on the concentrations of the ionic
species in the electrolyte surrounding the electrodes, and on the di�erences of
electric potential between each electrode and the electrolyte around it.

The reactions are very slow in pure water, because the molar concentrations
of H+ and OH− are very small; nH = nOH = 10−7 mol/L at normal temperature
and pressure, from the equilibrium of the dissociation reaction

H2O � H+ + OH−

and the condition of electrical neutrality nH = nOH .
An alkaline solution is obtained by dissolving in water a species that dissocia-

tes into OH− and a cation (KOH is used in most commercial electrolyzers), so
that the H+�OH− equilibrium is displaced toward increasing the concentration
of OH−, and the cations supplied by the dissociated species enforce quasineutra-
lity. The overall reduction reaction at the cathode is then

2H2O + 2e− � H2 + 2OH−,

and the OH− travels to the anode to undergo the oxidation reaction

2OH− �
1

2
O2 + H2O + 2e−.

An acidic solution is obtained by dissolving a species (e.g. H2SO4) that
displaces the H+�OH− equilibrium toward increasing the concentration of H+,
with the anions of the dissociated species enforcing quasi-neutrality. The
oxidation reaction at the anode is then

H2O �
1

2
O2 + 2H+ + 2e−,

and the H+ ions travel to the cathode to be reduced in the reaction

2H+ + 2e− � H2.

2.1. Cathode reaction

We focus on the reduction reaction going on at the cathode and use the
Butler-Volmer model to write its rate in the form

ω =
iso
2F

[
e2αF (φ0−φeqs0 )/RT

(
nH2O

nw

)2

− e−2(1−α)F (φ0−φeqs0 )/RT
(nOH

ns

)2 nH2

ns

]
,

in the alkaline case, and

ω =
iso
2F

[
e2αF (φ0−φeqs0 )/RT

(nH

ns

)2
− e−2(1−α)F (φ0−φeqs0 )/RT

nH2

ns

]
,
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Figure 2: De�nition sketch.

in the acidic case.
Here ω is the number of moles of hydrogen produced per unit time and unit

electrode area; nj with j = H2O, OH, H, H2,are the molar concentrations of the
species taking part in the reaction, with ns = 1 mol/L the molar concentration
of all the electroactive species in the so-called standard reference state, in which
nH2O

= nw = 55.55 mol/L (pure water); φ0 is the electric potential at the edge
of the double layer relative to the electrode (where φ = 0) and φeqs0 is the
equilibrium value of φ0 at which ω = 0 in the standard reference state; is0
is the exchange current in the standard reference state, which is a function
of the material and structure of the electrode; R, F and T are the universal
gas constant, the Faraday constant and the temperature; and α, the transfer
coe�cient, is a model constant.

Since the solubility of hydrogen in water is very small, the solution rapidly
becomes supersaturated and hydrogen bubbles nucleate on the cathode.

2.2. Model formulation

A quiescent, dilute solution is considered, in which hydrogen bubbles grow
quasi-statically at the electrode due to the di�usion �ux of dissolved hydrogen
reaching their surfaces from the supersaturated liquid around the electrode.
The bubbles detach when surface tension ceases to be able to balance buoyancy.
In the model, the bubbles are equispaced and grow synchronously, so that only
the conditions around one bubble need be computed. In addition, the bubbles
are assumed to be axisymmetric. In these conditions, the concentrations of
ions (n) and dissolved hydrogen (nH2

), and the electric potential (φ) satisfy

∇2n = ∇2nH2
= 0, ∇ · (n∇φ) = 0

outside the double layer on the electrode. These equations are obtained by
linearly combining the conservation equations for the two ionic species and the
dissolved hydrogen, and imposing quasi-neutrality.
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Nucleation, growth and detachment of bubbles formed by reaction over surfaces

In the region of the electrode surface (x = 0) not covered by bubbles, the
boundary conditions

∂n

∂x
= ∓ 2Z

(1 + Z)D∓
ω,

∂n

∂x
± ZF

RT

∂φ

∂x
= 0, −DH2

∂nH2

∂x
= ω

must be satis�ed. These conditions express the balance of the �ux of each
electroactive species entering or leaving the double layer (by di�usion and
migration from the bulk), and the rate at which that species is consumed
or produced by the electrode reaction. Upper signs are for the an alkaline
solution and lower signs are for an acidic solution. Z is the modulus of the
charge number of the cations in the �rst case and of the anions in the second;
and D± and DH2

are the di�usivities of H+, OH− and dissolved hydrogen.
At the surface Σb(t) of a growing bubble, the conditions that the �uxes of

both types of ions be zero and the concentration of dissolved hydrogen be the
saturation concentration ns read

nb ·∇n = nb ·∇φ = 0, nH2
= ns at Σb,

where nb is the unit normal to the bubble surface.
In addition to these, conditions of zero �ux mimicking a periodic array of

bubbles are imposed at a distance W from the symmetry axis:

∂n

∂r
=
∂nH2

∂r
=
∂φ

∂r
= 0 at r = W.

Finally, the conditions

n = nr, nH2
= nH2r

, φ = V at x = L

are imposed at a distance L above the electrode.
With nr, nH2r

and V constant, these conditions can be approximately
realized if the cathode is at the bottom of a recess of depth L and a stream
�ows horizontally above the recess that uniformizes the concentrations of all
the species without inducing a signi�cant �ow in the recess. The anode (not
analyzed) would be a horizontal electrode much larger than the cathode and
located far above the recess, so that it acts as a nonpolarizable electrode.

2.3. Bubble growth and average current density

Once the solution of this problem is found for a given equilibrium shape of the
bubble, the mass �ux of hydrogen reaching the bubble can be evaluated as

ṁ = WH2
DH2

∫

Σb

nb ·∇nH2
dA,
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where WH2
is the molecular mass of hydrogen, and the rate of growth of the

bubble volume, Vb, whose shape is an equilibrium shape at any time, is

dVb
dt

=
RT

WH2
pg(t)

ṁ(t)− RT

WH2
pg(t)2

∫ t

0
ṁ(t′) dt′

dpg
dt

,

where pg(t) is the pressure of the gas (hydrogen) in the bubble, which is a
known function of the bubble volume.

The electric current density averaged over the surface of the electrode is

ı(t) =
2π
∫W
rc

2ωr dr

πW 2
.

where rc(t) is the radius of the contact line of the bubble with the electrode.
This current density is further averaged over the time of growth of a bubble

and scaled with FDOHnr/`c in the alkaline case and with FDHnr/`c in the
acidic case, where `c = (γ/ρg)1/2 is the capillary length, with ρ, γ, g the
density and surface tension of the liquid, and the acceleration of gravity.

2.4. Results: Average current density as a function of voltage

Figure 3 shows the space and time averaged current density as a function of
the modi�ed dimensionless voltage Ṽ = F (V − φeqs0 )/RT for various values of
other parameters in alkaline (left) and acidic (right) cases.

Solid curves give the current density in the absence of bubbles. In the
alkaline case (in which water consumption has been neglected) the current
increases exponentially with the voltage. In the acidic case, the concentration
of H+ at the electrode tends to zero when the voltage increases, and the current
density saturates at a �nite value.

The current density increases in all cases with the exchange current is0,
which is a measure of the catalytic activity of the electrode.

Hydroxide ions are a reaction product in the alkaline case. The current
density decreases when the concentration of this species is increased at the
upper boundary by increasing nr.

In the acidic case, H+ is a reactant. The current density increases when its
concentration is increased at the upper boundary.

Symbols are numerical results with bubbles. As can be seen, the current
density increases when bubbles are present. This bene�cial e�ect of the bubbles
can be traced to their role as sinks of dissolved hydrogen. Since hydrogen is
the product of the cathode reaction, decreasing its concentration increases the
forward rate of the reaction, and thus the electric current.

In the framework of this model, this e�ect overcomes the negative e�ect
of attached bubbles, which cover a fraction of the electrode area, rendering it
inactive for the electrochemical reaction.
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Figure 3: Space and time averaged current density as a function of the voltage
Ṽ , for alkaline solutions (a) and acidic solutions (b). Shown are results for
W = 1, θ = 45o and nr = 0.1 mol/L, is0 = 10−3 A/m2 (pluses), nr = 0.1 mol/L,
is0 = 0.1 A/m2 (crosses), nr = 0.1 mol/L, is0 = 10 A/m2 (starts), and nr =
0.5 mol/L, is0 = 10 A/m2 (open squares). The thin curves show the current
density in the absence of bubbles. Solid curves are for nr = 0.1 mol/L, with is0
increasing from right to left, and the dashed curve is for nr = 0.5 mol/L, i0 =
10 A/m2. In addition, the �lled squares and the chain curve in (a) are results
for nr = 0.5 mol/L, is0 = 10 A/m2 taking water consumption into account,
and the triangles and the chain curve in (b) are results for nr = 0.1 mol/L, is0
in�nite.
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Figure 4: (a) Mass of hydrogen vaporizing per unit time as a function of the
cubic root of the bubble volume, and (b) cubic root of the bubble volume as a
function of time, in linear and logarithmic scales (inset), for some sample cases.
Solid: acidic, Ṽ = 2 and 5, W = 1; dashed: acidic, Ṽ = 2 and 5, W = 3;
dash-double-dot: alkaline, Ṽ = −2, W = 1; dash-dot: alkaline, Ṽ = −2,
W = 3. The dotted lines in (a) have slope 1/2, and the dotted lines at the

lower part of (b) are V 1/3
b = 0.3 t1/2 and V 1/3

b = 0.4 t1/3.

2.5. Results: Growth of a bubble

Figure 4 shows the mass of hydrogen vaporizing per unit time as a function
of the size of the bubble, de�ned as the cubic root of its volume, and the
right-hand side �gure shows this size as a function of time.

The rate of intake of hydrogen is nearly proportional to the size of the
bubble when the bubble spacing (W ) is large compared with the capillary
length. This leads to a size that grows nearly as the square root of time.

When the spacing of the bubbles is decreased, most of the hydrogen produ-
ced at the electrode reaches the bubbles, because the channels left between
bubbles are too narrow for the hydrogen to escape through them. The vaporization
�ux is nearly independent of the size of the bubble, and their volume increases
nearly linearly with time.

3. Phase �eld formulation

A useful approach to simulation of problems involving moving interfaces separa-
ting two di�erent phases is by means of a so-called phase �eld. This approach
amounts to introducing a phase �eld scalar function Ψ(x, t) so that Ψ = 1 in
one phase and Ψ = −1 in the other phase. The function Ψ will have a very
sharp transition between the two limiting values −1 and 1 across the interface.
In this way, sharp interfaces are replaced by "di�use interfaces" which are
not exactly surfaces but space regions where the level lines of Ψ with values
between −1 and 1 concentrate. The easiest way to introduce the phase �eld
into a model comes from the observation that a free energy involving the area
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A of an interface
F = γA

is well approximated by the following phase-�eld energy

Fδ = γ0

∫ (
δ
|∇Ψ|2

2
+

1

δ
W (Ψ)

)

where
W (Ψ) = (1−Ψ2)2.

Classical works (see, for instance [1], [3] and references therein for more informa-
tion) show that minimizers of Fδ, that is interfacial shapes that minimize Fδ,

converge (in a suitable sense) to minimizers of F as δ → 0 provided γ = 4
√

2
3 γ0.

The level lines of Ψ concentrate in a O(δ) region along the normal direction to
the interface and the function Ψ in that direction approaches the explicit form
Ψ = tanh x

δ with x the coordinate in the normal direction. This stationary
version of the phase �eld methodology extends more or less automatically
to evolutionary problems where interfacial energies come into play like, for
instance, a gradient �ow involving F that is replaced by a gradient �ow of
Fδ. This yields, depending on the kind of gradient �ow considered, to the
well-known Allen-Cahn equation (�rst introduced in [2])

Ψt = −δFδ
δΨ

and the Cahn-Hilliard equation (cf. [4])

Ψt = −∇ ·
(
M(Ψ)∇δFδ

δΨ

)

which are typically the evolution equations for Ψ when coupled with other
physical �eld equations. An important di�erence between Allen-Cahn and
Cahn-Hilliard is that the later preserves the volume enclosed by a level surface
of Ψ. This is important, for instance, when modelling incompressible �uids.
Phase �eld formulation, with Ψ solving Cahn-Hilliard equations, for two-phase
�uids satisfying Navier-Stokes equations under the e�ects of surface tension
has been introduced to successfully model drops and bubbles (see [1] and the
references on classical works presented there). The great advantages of a di�use
interface models with respect to classical sharp interface models is that it allows
to continue solutions after topological changes such as bubble detachment,
coalescence or collapse and allows solving for multiple bubbles at the same
time (see [5] for instance or [6] for the speci�c problem of the detachment
of a bubble). In addition, since no sharp moving interfaces are present, one
does not have to deal with boundary conditions there and this represents an
enormous advantage for numerical implementation.
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In our problem, we have to couple the phase �eld Ψ with the other �elds
in the model so that equations and boundary conditions are satis�ed as δ → 0.
In this spirit, we replace the ion concentration equation

∇2n = 0

to be satis�ed in the liquid medium with the equation

∇ · (a(Ψ)∇n) = 0

where

a(Ψ) =
1 + Ψ

2
so that both equations coincide when Ψ = 1 but ions do not di�use inside the
bubble where a(Ψ) ' 0. Analogously, for the electric �eld equation

∇ · (n∇φ) = 0

we write in terms of the phase �eld Ψ

∇ · (a(Ψ)n∇φ) = 0

At the surface of the bubble, continuity of a(Ψ)∇n · n and a(Ψ)n∇φ · n in
the normal direction implies that necessarily ∇n · n ' 0 and n∇φ · n ' 0
when approaching the bubble from the liquid interface. In this way, boundary
conditions at the bubble are satis�ed. Finally, for the H2 concentration nH2

we replace the equation
−∇2nH2 = 0

with the equation

−∇ · (a(Ψ)∇nH2) + b(Ψ)(nH2 − ns) = 0

where the term b(Ψ)(nH2 − ns) represents a penalization that cancel at the
liquid region but imposes nH2 = ns inside the bubble an at its boundary. This
is achieved by taking

b(Ψ) = C
1−Ψ

2

with C > 1 and su�ciently large.
At the electrode, we impose the same conditions but replacing the Damköhler

number Da with a Ψ dependent one:

Da(Ψ) =
1 + Ψ

3

Concerning the phase �eld Ψ, we must guarantee that the bubble grows
when H2 enters inside it. The volume of the drops Vb satis�es

dVb
dt

= −
∫

int
∇nH2 · ndS = 0 (1)
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which is ful�lled in the equation

Ψt +∇nH2 ·∇Ψ = 0 (2)

where the volume enclosed by a lever surface of Ψ satis�es (1). Nevertheless,
equation (2) is not su�ciently suitable for two reasons: �rst it is �rst order
and hence prone to numerical instabilities, and secondly it does not guarantee
an equilibrium bubble surface. A solution to these two problems is to modify
(2) in the form of the following Cahn-Hilliard version:

Ψt +∇nH2 ·∇Ψ = −∇ ·
(
M(Ψ)∇δFδ

δΨ

)

to be solved together with boundary conditions imposing that mass �ow across
the solid substrate is negligible and motion of contact lines of the interface
touching the solid substrate. The �rst condition is ful�lled by imposing

M(Ψ)∇δFδ
δΨ
· n = 0

while the second can be implemented with

γ0δ
∂Ψ

∂n
+ γ′fs(Ψ) = 0

with

γfs(Ψ) =
γ

(1)
fs − γ

(2)
fs

2
sin

πΨ

2

where γ(1)
fs − γ

(2)
fs is the jump of interfacial tensions between the liquid-solid

and the gas-solid interface. It can be shown (see [1]) that, in rest, the level
lines of Ψ touch the substrate with an approximate angle θ so that

cos θ =
γ

(1)
fs − γ

(2)
fs

γ

3.1. Results: A simpli�ed model

A simpli�ed model is employed to test the phase �eld formulation. In this case
the phase �eld Ψ is de�ne as a static �eld:

Ψ(x) =

{
−1 if x ∈ B(R,xc),
1 if x /∈ B(R,xc),

(3)

where R ∈ R is a �xed scalar that represents the radius of the bubble and
xc ∈ R2 is its center.

A 2D problem with only one bubble, de�ned by Ψ(x), is solved avoiding
the resolution of the evolution of the phase �eld equation (Allen-Cahn or
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Cahn-Hilliard). The weak formulation of the equations is obtained multiplying
each equation by a test function, integrating over the domain and applying a
Green`s formula:

∫

ΓE

a(Ψ)∇n ·mñds−
∫

Ω
a(Ψ)∇n · ∇ñdx = 0 ∀ñ ∈ H1

ΓD(Ω) (4)
∫

ΓE

a(ψ)n∇φ ·mφ̃ds−
∫

Ω
a(Ψ)n∇φ · ∇φ̃dx = 0 ∀φ̃ ∈ H1

ΓD(Ω) (5)

−
∫

ΓE

a(Ψ)∇nH2 ·mñH2ds+

∫

Ω
a(Ψ)∇nH · ∇ñH2dx

+

∫

Ω
b(Ψ)(nH2 − ns)ñH2dx = 0 ∀ñH2 ∈ H1

ΓD(Ω) (6)

where

a(Ψ) =
1 + Ψ

2

is a function that is 0 inside the bubble,

b(Ψ) = 106 1−Ψ

2

is a penalty term to force nH2 = ns inside the bubble and ΓE is the electrode
boundary, the bottom side of the rectangle that de�nes the computational
domain. On the top side, ΓD, the Dirichlet boundary conditions are applied.
A solution of this problem can be seen in Figure 5. The solution is obtained
by using the FEniCS package [7], a set of libraries for the solution of Partial
Di�erential Equations (PDE) by the Finite Element Method (FEM).

4. Conclusion

A model has been set up to extend the so-called sharp interface model (a model
for which the interphase is a surface). The computational domain of the new
model includes both the bubbles and the liquid around. The free boundary
between them is handled by using a phase �eld method. Preliminary numerical
results obtained by using FEniCS package are very promising as they exhibit
good agreement between the two models. Pending developments are,

� Including gravity and other body forces

� Handling several bubbles. Allowing coalescence and bubble formation
(nucleation)

� Including motion of the electrolyte
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Figure 5: φ, n, nH2 �elds obtained by the phase �eld strategy.
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